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The biharmonic boundary integral solution of two-dimensional creeping flow of an incom- 
pressible Newtonian fluid is extended to problems with free surfaces. Iterative construction of 
the free surface with the normal stress condition is achieved with a shooting method that is 
most appropriate for thin films and menisci of widely varying curvature. A continuation 
scheme is also introduced to systematically construct the solution as a function of a given 
parameter. These new techniques, combined with the known storage and computational 
advantages of the biharmonic boundary integral method, allow construction of difficult free 
surfaces. We demonstrate this by solving the Bretherton problem of a two-dimensional air 
bubble traveling in a channel. Agreement with asymptotic theory and the finite-difference 
method is shown. Other problems on formation and transport of bubbles in channels are also 
tackled. $3 1988 Academic Press. Inc. 

1. INTRODUCTION 

The boundary integral method is especially useful for slow flow problems. The 
ellipticity of the Stokes equation ensures the existence of fundamental solutions 
which can be used to convert the equation into an integral equation involving 
boundary integrals. Consequently, only boundary grids need to be constructed in 
contrast to the finite-difference and finite-element methods which require interior 
grids. This provides considerable reduction in storage and computational 
requirements for the same numerical accuracy. For example, comparative accuracy 
for two-dimensional problems can be achieved with O(N) grids when fmite-dif- 
ference and finite-element methods require O(N2) grids. One major difficulty of the 
method, however, lies in the integration of the fundamental solutions. Earlier 
applications by Youngren and Acrivos and Rallison and Acrivos [l-3] follow the 
work of Ladyzhenskaya [4] who constructed the fundamental solutions to the 
Stokes equation. The integration of the associated singular integrals becomes very 
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tedious in this approach due to the high order singularities of Ladyzhenskaya’s 
fundamental solutions. Lee and Lea1 [S] and Lea1 and Lee [6] have carried out 
meticulous Taylor expansions about the singularities to facilitate the integration. A 
modified biharmonic boundary integral method which circumvents the integration 
difficulty has recently been proposed by Kelmanson [7]. By formulating the 
creeping flow problem in terms of two Laplacian equations of the stream function 
and the vorticity (see Eq. (1)) his fundamental solutions are simply the low order 
Laplacian fundamental solution. Consequently, the singular integrals can then be 
analytically evaluated in a piecewise fashion. This represents a significant 
improvement over the earlier approaches and we shall follow their method in this 
study. 

When a free surface exists in the slow flow problem, the equations are no longer 
linear due to the interracial conditions. Nevertheless, by using an iteration scheme 
which assumes that the profile is known at each step, the problem remains linear at 
each step and boundary integral methods can still be used [Z, 3, 5, 8). This implies 
that one of the interracial conditions must be relaxed during each step and the same 
condition is then utilized to update the profile in an interative scheme such as the 
Newton-Raphson method. The choice of the iterative equation has been studied by 
Silliman [9] for finite-element methods. He found that the normal stress condition 
should be used at low capillary numbers (the dimensionless velocity, see Eq. (22)). 
The same condition has also been used by Orr and &riven [IO] and 
Lowndnes [ 111 for finite-element methods. It should be mentioned that Saito and 
Striven [24] have proposed an alternative scheme without iteration which appears 
to avoid convergence difficulties for some problems. However, iteration with the 
normal stress condition is adopted here since convergence is achieved very rapidly 
in most of our cases. It is also compatible with the continuation scheme that will be 
described later. 

Implementation of the normal stress condition during the iteration step, however, 
is not a simple matter. Traditionally, this is achieved by collocating the free surface 
and updating the surface position using a Newton-Raphson scheme until the 
residual of the normal stress condition converges sufficiently to zero at a finite num- 
ber of collocation points on the surface [2, lo]. While this method works well on 
menisci of relatively constant curvature, it usually requires a large number of 
collocation points for free surfaces with widely varying curvatures. Also, for flat 
films of very small thickness, local numerical fluctuation often causes the interface 
to penetrate into impossible regions such as the solid boundary when the above 
iterative scheme is used. An alternative method is to describe the interface by a 
prescribed function with unknown parameters which will never exceed the physical 
region and to estimate these parameters iteratively to minimize the residual. This is 
the scheme chosen by Kelmanson [8] in his attempt to extend the biharmonic 
boundary integral method to free-surface flow. However, for surfaces with large 
changes in the curvature, these prescribed functions usually do not have sufficient 
degrees of freedom to resolve the interface. In our solution of the Bretherton 
method, both the collocation technique and the functional description failed. 
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Instead, we shall propose here an alternative iteration scheme with the normal 
stress condition. The normal stress condition is converted into a first-order differen- 
tial equation for the curvature. This differential equation can be formulated in terms 
of the arclength of the free surface if necessary to improve the resolution. The 
equation is then solved by a shooting method from one end of the free surface to 
the other. Prescribed boundary conditions of the curvature at both ends minimize 
the possibility of erroneous surfaces that exceed the computational domain. For 
example, in the thin film region, the curvature can be prescribed to be close to zero. 
More importantly, the shooting method allows arbitrarily fine construction of the 
free surface by using small and adaptively adjustable shooting step sizes. Steep 
profiles can be resolved by using the arclength as the independent variable in the 
differential equation. 

A continuation scheme is also utilized in the present analysis. The solutions are 
traced as functions of the system parameters such as the capillary number, the inter- 
facial pressure drop and the liquid flow rate. The initial guess on the profile for each 
parameter value is based on the converged profile of the previous value and its 
derivative. It is similar to the technique used by Chang and Brown [12] for the 
Rayleigh-Bernard problem. The present problem is especially amenable to this con- 
tinuation technique. Analytical solutions to the problem are available at some 
extreme conditions, such as no flow, which can be used to initiate the tracing of the 
solution branches. In many instances, these continuations allow us to reach 
problematic profiles which are difficult to construct by iterations using arbitrary 
initial profiles. 

With the combined advantages of the biharmonic boundary integral method, the 
iteration, and the continuation schemes, we are able to obtain converged two- 
dimensional profiles of difficult free-surface problems. We will tackle the Bretherton 
problem of air linger penetration into a channel filled with a viscous fluid [13, 141. 
It involves a very thin film of zero curvature which grows into a static cap with cur- 
vature equal to the inverse of the half-width of the channel. Hence, it requires 
resolution of a thin film region and a meniscus with varying curvature. Moreover, 
asymptotic results for small penetration velocity exist and numerical results for 
large Ca have also been obtained by Reinelt and Saffman [ 151 and Shen and 
Udell [ 161. These results allow verification of the results from the present method. 
Reinelt and Saffman [ 151 used a finite-difference scheme coupled to a domain 
transform technique to resolve the thin film and Shen and Udell used linite- 
elements. With the storage and computational advantages of biharmonic boundary 
integral method over the finite-difference and finite-element methods, agreement 
with their result would then justify the former method as an important technique 
for free-surface problems. We also solve several related problems on steady trans- 
port of finite bubbles and cavitation or formation of bubbles behind an obstacle or 
at an orifice. 
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2. FORMULATION 

The stream-function-vorticity formulation of the two-dimensional creeping flow 
equations are 

v2*=o 

v20 = 0. 

(la) 

(lb) 

Defining the fundamental equations to (1) as 

V;G(P, q)=&lp-qlh 

v;G,h q)=4lp-d), 

Pa) 

(2b) 

yields the two-dimensional fundamental functions 

G,(~,q)=logl~-ql 

G,(P, q)= Ip-q12Chlp-ql - 11 

@a) 

(3b) 

Applying Green’s theorem in the standard boundary integral formulation, one 
obtains the governing integral equations over the boundary X2, 

8~) In/ = il,, W(q) G,n(p, 4) - l//n(q) G,(P, q) 

+ +Cdq) G,,(P, 4) - w,(q) G,(P, s)l> 4 

5(p) 4~) = I, k4d G,,(P, 4) -on(q) G,(P, s)> 4, 

(da) 

(4b) 

where subscript n denotes the normal derivatives and t(p) is the geometric factor 
related to the Cauchy principal value of the boundary integrals, 

pt-+m 
p-, 
PEG 

(5) 

where CI is the internal angle (in radians) between the tangents to X2 on both sides 
of p. 

Giben N grids on dQ, the integrals in Eqs. (4) can be discretized assuming 
piecewise constant functions. The discretized version can be represented by 

Ayr+Bqf+Co+Do’=O 

Ao+Bo’=O, 

(6a) 

(6b) 
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where w  and w’ are the vectorized II/ and II/,, values on the grids and o and w’ the 
corresponding ones for w. The matrices A, B, C, and D are defined as 

A,= 
s ’ ClOgl~i-~l14-5j~~ 
ycaQ, an 

(74 

B,= - 
f log lqi- ql 4 (7b) yem, 

D,= -;j {I~i-~1210gIqi-ql-Iq,-q12} 4, 
4eq 

where &Qi is the jth segment between nodes j and j+ 1 and the i nodes are taken to 
be the midpoint of aa,. This selection of grid points yields analytical expressions for 
the elements of the above matrices. Their formulae are given by Jaswon and 
Symm [17] and Kelmanson [7]. The diagonal terms Aii are not described by 
Eq. (7). From, Cauchy’s principal value theorem, in can be shown that 

Ai;=n- 1 (A~-tj). (8) 
ifi 

In many earlier applications of the boundary integral method [18, 191, these 
singular terms are often neglected with the justification that for sufficiently line 
grids, their contributions are negligible. We find that such shortcuts are not valid in 
our problem. For large number of grids (N> 50), the matrices with zero diagonal 
terms are often numerically singular and even when they are non-singular, the 
iteration often diverges. It is hence important to include the diagonal terms of 
Eqs. (8). 

Equations (6) represent 2N equations for the 4N unknowns, VI, \v’, o, and 0’. 
The remaining equations must come from the boundary conditions. Hence, at every 
grid point, two boundary conditions must be specified. This is, of course, impossible 
in a free-surface problem since the free surface is unknown. However, since we shall 
adopt an iterative determination of the free surface, at each iteration the surface is 
known from the previous step. Hence, two conditions on the free surface must be 
imposed and the remaining one, the normal stress condition, will be used to update 
the free surface at each iteration. We specify below the most common boundary 
conditions: (U and u are the tangential and normal velocities in the stationary coor- 
dinate and subscripts t and n are the tangential and normal derivatives): 

(a) no-slip at wall boundaries S, (U = u = 0) 

$,=$?I=0 (9) 
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or 

till=0 and + = constant; (10) 

(b) Symmetry boundaries S, (u = U, = o, = 0) 

*=o and 0 = 0; (11) 

(c) unidirectional flows Si (u = 0, u(y) specified) 

O(Y) and 1,9(y) specified; (12) 

(d) free surface S, 

l)=o kinematic condition (13) 

a= -2Kt+bn tangential stress (14) 

&K,=w,,Kof2$.,,, normal stress, (15) 

where K is the curvature of the free surface and s denoted arclength derivative along 
the interface, $,,,, = $,,,, + Kt,b,,,, [S]. Equations (14) and (15) are derived by 
Kelmanson [8]. It is obvious that the normal stress condition, Eq. (15), cannot be 
easily used as an additional equations since it introduces a new unknown, tinrr. 
Hence, Eq. (15), is. best left as the iteration equation. The remaining boundary con- 
ditions then provide the missing 2N equations which can be solved simultaneously 
with Eqs. (6). The equations are linear provided the boundaries are specified and 
the linear matrix equations can be solved by standard library routines. 

The iteration procedure based on the normal stress condition involves the path 
integral 

K’+l(y)=K(0)+Caj-;( WA -Kiwi+ 21&) (cos a,)- ls dy, (16) 

where /I is the angle the tangent t makes with the horizontal coordinate x, 

dx/dy = -cot /I (17) 

and x(y) is the interface position. The superscripts and subscripts j in (16) refer to 
the values of thejth iteration. The inclination angle /3 at a point on the interface is 
also related to the local curvature by 

I, dcosj3 dcosp 

K= [l +;r2,3/2 y’dx 
=-=- 

dy (18) 



346 LUANDCHANG 

Hence, the j + 1 inclination angle can be evaluated from (16) by 

COSpj+l(Y)=5:Kj+'d~+COSP(O) (19) 

and Eq. (17) can be used to obtain the new profile xj+ ,( y). 
The integration constants cos /I(O) and K(0) are either specified due to symmetry 

and imposed pressure drops at the bubble front or K(0) may be determined from 
the specified values of K at some other locations, say x -P 00. In the latter case, 
Eq. (16) is integrated once to specify K(O).It should also be noted that the free 
surface x(y) may be multi-valued function of y. In such cases, the profile may be 
better represented by y(x) if it is a single-valued function of x and the chain rule 
can be used to modify Eqs. (16), (17), and (19). Alternatively, an arclength 
parameterization of the profile can also be used. This would be the most general 
formulation and allows resolution of steep profiles with respect to x or y. However, 
the profiles in the present problems can be constructed by the above equations 
without recourse to the arclength formulation. 

In many cases, we facilitate the convergence of the iteration scheme by introduc- 
ing a relaxation parameter. 

Ki+l = KJ + a(Kjhl - KJ), (20) 

where CI is a parameter between zero and unity and its value can be optimized by 
trial-and-error. 

After the iterations have converged to a certain specified tolerance, a con- 
tinuation technique is used to initiate the next iteration for a different parameter 
value. Let x be the vectorized location of the profile x(y), then the continuation 
scheme is described by 

(21) 

where xl;,+ dj, is the initial guess for the profile at A + Al and x[~ is the converged 
profile at 1. The derivative dx/dA can be evaluated from even earlier converged 
profiles such as at 1- Al, etc. The increment on AA is also optimized by checking 
the number of iterations required at each 2 value. Details of our continuation 
technique can be found in our earlier paper on tracing of time-periodic solutions 
[20]. Other than improving convergence rate, this continuation scheme also allows 
systematic approaches to difficult profiles from simple or known profiles at different 
2 values. 

3. THE BRETHERTON PROBLEM 

The Bretherton problem of a semi-infinite inviscid bubble penetrating into a 
channel containing an originally stationary viscous fluid is depicted in Fig. 1. 
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31 Slug Flow , 
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Profile 

FIG. 1. Schematic for the semi-infinite Bretheron air finger penetration problem. 

The lengths are scaled with respect to the half-width of the plates b. The bubble 
displacement velocity U is used as the characteristic velocity and hence Cu in the 
normal stress condition of Eq. (15) corresponds to 

Ca= @/a, (22) 

where a is the surface tension coefficient. Pressure is scaled by pUo/b. The bubble 
profile intersects the plane of symmetry S, at right angles and hence cos p(O) 
vanishes in Eq. (19). The bubble lays down a stationary film of constant thickness 
1 -f, behind it at x + --co and the liquid flows ahead of the bubble with a 
Poiseuille profile at x + +co. A simple mass balance in the dimensionless variables 
yields that 

Q=fCC, (23) 

where Q is the average linear velocity of the liquid upstream in the stationary coor- 
dinate. In a coordinate system moving with the steady bubble, the upstream liquid 
velocity is Q - 1. Hence, setting $ to zero on the interface S, and plane of symmetry 
S,, the value of the stream function on the wall becomes f, - 1. In this moving 
reference frame, the tangential velocity of the wall given by (9) must be replaced by 

l+b,= -1. (24) 

The only remaining boundary conditions are the ones at S, and Sz. In the moving 
coordinate, they are 

$=.f,-Y o=o on S, (25) 

$=i/,(y-G)-y o=-3f,y on S,. 

Note that we can just as well specify + and tin (= 0) on S, and S, and have the 
boundary integral method solve for w  and o,, on these entrance and exit boun- 
daries. At these infinities, the profiles are known exactly and any two of the 
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TABLE I 

Convergence Test of Grid Number N 
(Cn = 0.005) 

N Converged f,, 

62 0.990 
61 0.978 
77 0.970 
82 0.968 
87 0.967 

variables need to be specified in our approach and the other two will be reproduced 
in the final result. Finally, during each iteration, K(0) of Eq. (16) is determined by 
integrating first to x = -co to ensure that K(x = -co) =O. 

Te stationary film left by the bubble decreases in thickness as the bubble velocity 
diminishes. The Bretherton perturbation result predicts that the two are related by 
Cl31 

1 -f, = 1.337cu2’3. (27) 

Hence, for Ca values below 10m3, the film is less than 1.5% of the half-width. 
Numerical analyses which provide such resolution are rare. The only successful 
attempts are the recent ones by Reinelt and Saffman [lS] and Shen and 
Udell [16]. Reinelt and Saffman only reported results for Ca > lo-* while Shen 
and Udell’s minimum Cu is 5 x 10P3, although they only consider axisymmetric 
bubbles. With these results from alternative approaches, this problem is ideal for 
testing the present biharmonic boundary integral method. More importantly, the 
validity of Eq. (27) for small Ca will be verified in the present analysis. 

The locations of S, and Sz are chosen to be x= -5 and x= +5, respectively. 
The results do not change significantly by pushing them further away. Different 
numbers of equally spaced grids are constructed on the boundaries to determine the 
number of grids needed for convergence. The result tabulated in Table I for 

TABLE II 

Grid Points on the Boundaries 
of Figure 1 

Sf 34 
S, 3 
s2 10 
SW 20 
SS 10 

Total 77 



BOUNDARY INTEGRAL STUDY 349 

0.8 

0.7 r 0.98 
0 5 10 15 20 25 

Iteration Number, j 

FIG. 2. Iteration history for Ca= 10-l and lo-’ 

Ca = 5.0 x lop3 indicates that grid numbers exceeding 70 yields f, within 0.5% of 
the converged value which is within 0.6% of Bretherton’s asymptotic result of 
0.9609. This is compared to N= 55 x 34 in the finite-difference approach for Reinelt 
and Saffman. The distribution of grids for N= 77 in our method is tabulated in 
Table II. Variation in N in Table I is achieved by adjusting the number of grids on 
the two unknown boundaries S, and S,. Convergence of the iterations for 
Ca = 10-l and 1O-3 are depicted in Fig. 2. Tolerance can be achieved up to 

8 \ 
\ 

0.4 - \ 
\ 

\ Bretherton’s Perturbation Result 

\ 
0.2 - \ 

\ 

1.0 

Ca 

FIG. 3. Comparison of the two-dimension channel flow results to Reinelt and Saffman’s numerical 
result and Bretherton’s perturbation result at large Ca. 
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If’,” -f’,llfb, < lo- 6. These iterations are not preceded by the continuation 
technique of Eq. (21). Nevertheless, the high initial guesses of foD converge rapidly 
in less than 15 iterations. Each iteration only takes approximately 2 s of CPU on 
the AS9000. In general, the number of iterations for convergence increases with Cu. 
However, resolution of thin films for small Cu is often difficult during integration of 
Eqs. (16), (17), and (19). 

The continuation scheme is initiated at large Ca where the film is thick and the 
profile is more readily obtainable. The solution branch is then traced for decreasing 
Ca. The scheme fails at approximately 5.0 x 10e4 when the film is too thin for the 
integrations of Eqs. (16), (17), and (19). The large Cu results are shown in Fig. 3 
and compared to the perturbation result of Bretherton, Eq. (27), and Reinelt and 
Saffman’s finite-difference result. (The numerical data are kindly supplied by D. A. 
Reinelt). It is clear that the Bretherton perturbation analysis breaks down for 
Ca > 10 ‘. There is a small difference between our result and Reinelt and Saffman’s 
for Ca between 0.1 and 0.8. The small 1 -f, (Ca < 1) results are shown in Fig. 4 
and compared to the Bretherton correlation. Excellent agreement between 
numerical and perturbation results at low Ca is evident. It should also be noted 
that for Ca > lo- ‘, the numerical results can be described by the correlation 

1 -f, = 0.35Ca3/‘0 (28) 

which can be used to replace Eq. (27) for thick films. 
In Fig, 5, we present the pressure drop across the bubble front as a functon of 

Ca. Comparison is made to Reinelt and Saffman and Bretherton’s two-dimensional 

1o-4 1O-3 lo-' 10-l 10" 10' 

Ca 

FIG. 4. Comparison of low Cu numerical result to Bretherton’s perturbation result. 
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10-4 10-3 10-2 10-I 

Ca 

FIG. 5. Comparison of pressure drop correlation of various approaches. 

results. The excess pressure is determined from the local curvature at the bubble 
front and is the least accurate variable due to the derivatives of the profile in 
Eqs. (17) and (18). Given that, both our result and Reinelt and Saffman’s result for 
larger Ca yield reasonable agreement to the asymptotic theory of Bretherton, 

(Pg-P,P = AP Ca = K(0) = 1 + 3.72Ca213, 
(T (29) 

where AP is the dimensionless pressure drop, ( pg - p,)b/pU,,. Note that in Brether- 
ton’s original derivation [ 131 for any axisymmetric bubble, the profile is matched 
to a hemisphere at the tip and the resulting pressure drop is given by 
(20/b){ 1 + 1.79(3~UO/~)2’3}. In the present planar case, a half-circle instead of the 
hemisphere is appropriate and a similar matching analysis removes the factor of 2 
for the axisymmetric bubble to yield Eq. (29). It should be emphasized that our 
technique is able to resolve the tip curvature to a lower Ca than Reinelt and 
Saffman. This is because the curvature K is solved explicitly in the shooting 
iterations of Eq. (16). Moreover, we can easily choose step sizes of arbitrarily small 
magnitude during the shooting to resolve the tip region. In contrast, this is not as 
easily accomplished with the other methods since one would have to repeatedly 
construct extremely fine grids or elements in the tip region to achieve comparable 
accuracy. Also, since the profile position instead of K is computed in the other 
iteration schemes, K(0) would have to be estimated by taking derivatives of the 
profile as in Eq. (18). The estimation of the large first and second derivatives at the 
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tip again reduces the accuracy of previous methods. In our method, the curvature K 
is obtained directly and explicitly. 

By setting the Poiseuille stream function in Eq. (26) to zero, and intermediate 
location y, between S, and S,, where the stream function changes sign, 

(30) 

is given by 

2 3 
y;=rm zfm-1 

c I 
(31) 

Hence, for thin films 

fm>S (32) 

flow separation exists in the upstream Poiseuville flow and an additional stagnation 
point exists on the bubble other than the tip. This separation occurs for small Ca 
(Q 0.125 from Bretherton’s correlation, Eq. (27) and 0.1245 from our numerical 
result) and reflects a dramatic reversal of flow near the bubble front and at the 

’ ’ \ ‘# = -0.36 

- 
-0.30 

/ -o.26 

L\Y::: 

-0.005 
q=o --- +------- 

FIG. 6. Streamlines at two different Ca values with llow separation at the lower Cu. 
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plane of symmetry. The stagnation point on the bubble moves towards the front 
with increasing Cu until Cu = 0.125 according to Eq. (31). Our simulated flow fields 
for Ca = 1.5 and Cu = 10e2 are presented in Fig. 6. The existence of the stagnation 
points implies that only part of the liquid upstream is entrained into the film region. 
This accounts for the dramatic deviation from the Bretherton solution in Fig. 4 and 
represented by Eq. (28). Not surprisingly, the deviation begins at approximately 
Ca = 0.125 (see Fig. 4). 

4. BUBBLE FORMATION AT AN ORIFICE 

Another important engineering problem of free surface flow in channels is bubble 
formation (cavitation) at orifices (behind obstacles in a flowing channel) [21]. This 
is related to studies of aeration, cavitation, boiling, and gas-liquid equipment. 
Chuang and Goldshmidt [21] have measured the volume (or effective radius) of a 
bubble that can be sustained stationarily at the orifice. Under constant pressure 
drop conditions, the steady-state bubble volume decreases sharply with increasing 

K-‘(O) = 0.7 

FIG. 7. Bubble profiles at the orifice for various values of liquid flow rate Ca and bubble front 
pressure drops K-'(O). 
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liquid flow rate until the bubble is essentially “chocked” by the flow. At constant 
flow rate conditions, the bubble volume increases with increasing pressure drop as 
expected. The two-dimensional unbounded potential flow version of this problem 
has recently been analyze by Vanden-Broeck [22]. We tackle here the Stokes flow 
limit in a bounded channel with the geometry depicted in Fig. 7. The characteristic 
velocity is chosen to be Q/b, where Q is half the liquid volumetric flow rate and b 
the channel half-width. Hence, Ca is now associated with the liquid velocity 
downstream. Poiseuille profiles are imposed downstream and upstream, 

6 

@=(1-f,)’ 2 i[ 

l+fco 
s, : 

-yz-fmy-~]-(fi-3f’)} (33a) 
6 

$?I=0 Wb) 

s,I $=t(Y-Y3/3) 

i 

WW 
lj,=o. Wb) 

The boundary conditions are 

*=1 *II=0 at the wall 

*=o *II=0 at the orifice. 
(35) 

The other boundary conditions are identical to the semi-definite Bretherton 

1.8 - 

1.7 - 

Nal 
E 
Ii 1.6 - 

a 

: 
2 1.5 - 
u ca= 3.0 x 10-5 

2 
m' 1.4 - 

1.3 - 

1.2’ 
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 

K-' (0) 

FIG. 8. Numerical results of bubble area dependence on pressure drop at given Cu and orifice size. 
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problem of previous sections. Note that the surfaces within the bubble are excluded 
from the problem since we neglect flow of the interior fluid. Consequently, whether 
the orifice is open or closed is irrelevant and the problem is equally applicable to 
bubble formation at an orifice or cavitation behind a rectangular obstacle. 

We use an iteration trick to greatly simplify the present problem. If one specifies 
the locations of the bubble front and the orifice edge, K(O) of Eq. (16) is determined 
and integrations of Eqs. (16), (17), and (19) must be carried out during each 
iteration (as in the Bretherton problem) to ensure the interface hits the edge and to 
specify K(0). Instead, we choose to fix K(0) a priori without specifying the location 
of the orifice edge. Integrations are then initiated from the bubble front until the 
interface height reaches the orifice height f, from above. This specifies the location 
of the orifice edge for that iteration. Iterations are then continued until the location 
of the orifice edge converges. The quantity K-‘(O) is the radius of curvature of the 
bubble front and fixing K(0) is equivalent to specifying the pressure drop across the 
bubble tip (see Eq. (29)). 

The present problem is also most suitable for the solution continuation approach. 
The bubble profile for Cu = 0 just the arc of a circle of radius K- ‘(0) (see Fig. 7 for 
small Cu). This can be used to initiate the continuation with respect to Cu. The 

2.0 - 

,-Lo 
k 
II 

a 
_ 1.5- 

2 
2 
al 
E 
n 

zl 
1.0 - 

K-‘(O) = 0.95 

0.5' I I 1 I I 
0 0.1 0.2 0.3 0.4 0.5 

Ca x lo4 

FIG. 9. Numerical results of bubble area dependence on liquid flow rate Cu at given pressure drop 
and two orifice sizes. 
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where x, is the location of the back tip and re is the effective bubble radius. Con- 
vergence is determined by the variation in x, or the maximum of the profile y,. 

Solution of the present finite bubble problem proves to be far more difficult than 
the previous two. Iterations for y, close to they, value of the thin film semi-infinite 
case iuvariably diverge. Satisfactory result can only be obtained for y, < 0.6 and 
only with accuracy of 1 y i+ ’ - y;l/yi < 10P3. As is evident from Fig. 4, the Brether- 
ton analysis is not excepted to be valid for such small bubbles. Nevertheless, we 
present the converged profiles in Fig. 10 and the computed AK in Fig. 11 in com- 
parison to Eq. (36). The computed AK for Q = 0 (stationary film), which 
corresponds to Bretherton’s case, can be approximated by AK- ~.OCU~‘~. Hence, 
the numerical result duplicates the power dependence on Ca of the perturbation 
result but not the coefficient. It should of course be realized that the perturbation 
results are for long bubbles with extremely thin liquid layers near the channel wall, 
a limit that cannot be resolved numerically presently. The streamlines of a more 
deformed profile is shown in Fig. 12. Note the vortex pair behind the bubble. This 
how separation phenomenon seems to occur readily in the present problem despite 
the absence of intertial (vanishing Reynolds number). 

FIG. 10. Bubble profiles of tinite bubbles at various bubble velocity Ca and liquid flow rate Q values 
at given bubble area. 
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FIG. 11. Pressure drop dependence of a finite bubble of area 0.5 at various Q and Ca values. 
Bretherton’s perturbation result for long bubbles is also depicted. 
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FIG. 12. Streamlines of a finite bubble of area 0.5 penetrating into a stagment fluid (Ca=O.l and 
Q = 0). Note flow separation behind the bubble. 
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6. CONCLUSION 

An iterative and continuation scheme has been presented for a biharmonic boun- 
dary integral boundary method for steady bubble transport problems in two-dimen- 
sional channels filled with viscous fluids. The technique is verified comparison 
against the asymptotic Bretherton solution for the semi-infinite bubble penetration 
problem at Cu values lower than those obtained from finite-difference and linite- 
element methods. It has also constructed bubble profiles and bubble sizes during 
formation at an orifice or cavitation behind an obstacle. Partial results have been 
obtained for the steady transport of small bubbles in a channel. The advantages of 
the present method are not limited to the boundary integral formulation with its 
obvious superiority in computation and storage capacities. They also include the 
unique choices of iteration schemes and the use of continuation technique to reach 
diflicult locations in the parameter space. It should be mentioned that asymptotic 
estimates on the profiles are often used as initial guesses of the iterations, as 
Kelmanson [S] and Reinelt and Saffman [15] have done. However, in problems 
where such perturbation analysis is not possible, the continuation scheme presented 
here is especially advantageous. Even if perturbation results are available, one can 
use the asymptotic profiles to initiate the continuation scheme and trace the 
solutions into regions where the asymptotic analysis breaks down. In this fashion, 
the present numerical scheme is an excellent complement to perturbation analysis 
for interfacial problems under Stokes flow conditions. Finally, the present method 
still requires construction of the fundamental solutions. Extension to the axisym- 
metric problem would be straightforward since the Green’s functions for the 
axisymmetric Laplacian are readily available. For Hele-Shaw problems with lateral 
curvature as discussed by Park and Homsy [ 141, however, the Green’s functions 
would not be easy to construct. 
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